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Because spatial coordinates define a natural ordering of positions. it is always possible to 
associate with a set of randomly located points in a 3D space; grid indices which are ordered 
according to their relative positions. Such an indexing scheme can be used to construct a 
“monotonic Lagrangian grid” (MLG). a data structure where adjacent objects in space have 
close grid indices. Using an MLG to indes positions and attributions of objects in computer 
memory permits a near neighbor algorithm to be based on a “maximum index offset,” A’, , 
rather than a short range “cutoff’ distance R, An MLG algorithm removes the necessity of 
having to test distances or directions to determine adjacency. Further. “close” objects can 
be indexed via contiguous memory, thus permitting efficient vsctorization of computations. 
’ I987 .Acadcmic Press. Inc 

I. BACKROUND 

This paper analyzes an efficient algorithm for keeping track of “near neighbor” 
relationships among a large number of nodes, i.e., locations, objects, or particles. in 
a region of 311) space. The need to treat “near neighbor” interactions apphes to any 
system where: 

( I ) The node positions change due to particle velocity, local fluid velocity or 
changing view point. The neighborhood of each node is subject to continual change 
as some nodes move closer and others away. 

(2) Nearby node pairs interact. The interaction couid be an interparticle force 
or the rate of exchange of some quantity. Other relationships in&de geometric 
obscuration or graphical hidden line removal. 

(3) One can define a “cutoff’ separation or radius R, according to the type of 
interaction considered. For internode separations greater than R,. the interactions 
may be neglected, computed through some other approximation. or included 
through interactions with nearer nodes. 

For a large system of N nodes, it is advantageous to compute the interactions of 
each node with only a relatively few near neighbors. Algorithms are desired in 
which most of the nodes can be ignored without having to compute distances, 
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Pairwise interactions are only computed when the relative separation of the two 
nodes is less than the “cutoff radius.” 

It follows, for each node in a system of N nodes, that one must make N- 1 
“cutoff’ tests when no special algorithm is available to identify the near neighbors. 
Consequently, the operation count for distance checking scales as N2. Even when 
an interaction is neglected because IR, - R, ( > C,, checking the separation distance 
requires about 10 floating point operators per pair, a substantial fraction of the 
work needed to calculate the entire interaction. 

The operation count to identify near neighbors can be reduced significantly when 
node coordinates are ordered such that cutoff separation tests need only be 
performed over a small subset of the number of nodes in the system. Scalar sorting 
procedures have been developed for this purpose with operation counts scaling 
linearly with N or Nx log,(N) [I, 51. Because of the relatively slow scalar 
operations required in these algorithms to keep track of near neighbors, however, 
the computational cost is still prohibitive for large 3D systems using vector or 
parallel-processing supercomputers. The communications and data structures for 
these scalar algorithms are also not optimum for the fastest computers available. 

Algorithms using neighbor list techniques [7] which are vectorizable have been 
developed. These algorithms, however, have larger storage requirements and are 
thus not ideal for large systems. 

Boris [2] and Boris and Lambrakos [3] have developed an algorithm for 
keeping track of near neighbor interactions and geometric relationsips which scales 
as N and is structured to permit optimized vector and parallel processor implemen- 
tations. This development followed from efforts on the “nearest neighbors” problem 
begun with K. V. Roberts [S] at Culham Laboratory in the context of 
gravitationally attracting stars. There we chose a field-solver approach to finding 
the forcces not only because of the long range nature of the gravitational force but 
also because a good near neighbors algorithm was lacking. 

Our new algorithm uses a monotonic Lagrangian grid (MLG) for indexing the 
geometric positions and other dynamical attributes of the moving nodes in 
computer memory. The indexing ensures that nodes which are adjacent in real 
space are given MLG indices which are also very close. Given N nodes randomly 
located in a region of 3D space, one can associate with each node not only its 
spatial coordinates (X, I’, 2) but also a set of MLG indices (ij, k). A useful map- 
ping, which we have named a monotonic Lagrangian grid, is obtained when the 
node locations in space and the node indices in the computer memory satisfy a set 
of monotonicity conditions, for example, 

and 

X(i,j, k) < X(i+ 1.J k) for I < i < N., - 1 and all j, k 

Y(i,j, k) < Y(i,j+ 1, k) forl<j<N,-landalli,k 

(1.1) 

Z(i,j,k)<Z(i,j,k+l) forl<k<N,-landalli,j. 
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Were N, the total number of nodes, equals N, x N,. x N,. Note that the average 
separation of neighbors is not independent of the direction of their MLG index 
displacement since the metrics of the X, Y, and Z coordinates in the spatial domain 
need not be equal (nor even orthogonal). The MLG conditions defined in (I.1 j, 
although mathematically satisfactory for organizing random locations in space, are 
not optimal for mapping node positions into a vector computer memory. A skew 
periodic MLC with somewhat different indexing is described in Section 4. 

When two adjacent nodes pass each other in real space, relative to one of the 

chosen coordinate directions, their indices are exchanged or “swapped” in the MLG 
by moving the data for each node from its original indexed location to the indexed 
location of the other node which it just passed in space. The data for the nodes are 
swapped in the computer memory cells. This local swapping maintains a monotone 
mapping between the instantaneous positions of the nodes in reai space and their 
MLG indices. The ordinal node locations within the compact, regular MLG arrays 
are the same as the ordinal node locations in space, Node positions or any node 
attributes indexed in computer memory according to this scheme are said to be in 
“MLG order.” 

The speed of the MLG algorithm is controlled by (1) its straightforward 
vectorization; (2) the rapid convergence of the swapping procedure to restore the 
MLG; (3) the average distance the nodes travel between MLG reorderings; (4) the 
number of pairwise interactions for each node; and (5) the computational cost of 
computing these interactions. In our test and applications [9, 101 to date, the cost 
of swapping iterations scales as C, x N x logz(N) while the cost of calculating pair 
interactions scales as C2 x N. So much work is done per node to calculate the pair 
interactions, however, that C1 x log,(N) is of order 0.04 x C2 for N = 512. When 
N= 262,144, log,(N) is a factor of two larger and the cost of restructing the MLG 
increases to 8% of the interaction calculations. 

This paper presents an analysis and statistical results of the MLG algorithm 
applied to the random motion of point nodes in a cubical region. This 
computational domain is periodic in X and Y and is bounded in Z by two reflecting 
walls. The nodes are noninteracting and have a random distribution of initiai 
velocities. The two major aspects of the MLG algorithm considered here are the 
convergence of the swapping algorithm to maintain MLG ordering and the spatial 
properties of the new near neighbor indexing we have used, the “skew-periodic” 
MLG designed to facilitate long vector operations. This paper examines an MLG 
comprised of N; identical k-planes. Node locations within each k-plane are indexed 
via a “skew-perrodic” two-dimensional grid. The skew periodic indexing scheme is 
described and analyzed in Section 4. 

Swapping to maintain the monotone mapping is an iterative process. Its 
convergence rate depends on the size of the grid and how far the nodes move 
between restoration of the MLG ordering by swapping. Analysis of the required 
number of swapping iterations shows a better overall convergence rate for “large” 
changes in the positions of the nodes, i.e., long timesteps which result in significant 
MLG distortion. This is extremely encouraging as it implies that the MLG 
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swapping procedure is also a reasonable way to order fully disordered nodes. This 
paper presents frequency distributions of swapping iterations and swapping 
convergence characteristics for different timestep sizes and system sizes. 

The MLG algorithm is adaptable to a wide range of applications including 
important problems in astrophysics, molecular dynamics, particle, vortex, and 
object tracking data bases, and fluid dynamics which require calculation of near 
neighbor interactions for a large number of nodes whose relative positions change 
continually. 

The authors point out that the monotonic Lagrangian grid described in this 
paper is the monotonic logical grid described in related work given in the referen- 
ces. This name change has evolved from two distinct aspects of MLG algorithms 
which contribute to their efhciency. These are: the method of dynamically updating, 
in a Lagrangian manner, neighbor information and that the MLG inherently 
establishes an ordering relational or “logic” among information concerning nodes 
as it is arranged in memory thus providing a compact data structure for efficiently 
computing interactions among nodes. 

2. NEAR NEIGHBORS TEMPLATE FOR THE MONOTONIC LAGRANGIAN GRID 

The “order W scaling of the MLG algorithm’s interaction calculation is effected 
by calculating node-node interactions for only a finite set of small index offsets in 
the MLG which correspond to the near neighbors in space. The size and 
configuration of this set of index offsets, termed the near neighbors template 
(NNT), influences the coefficient of the ML.G cost which scales with N. 

The NNT can be visualized as a cluster of nodes, the near neighbors, 
surrounding a “focal node” (FN). If a particular node is taken as the focal node, the 
remaining nodes of the “template” define a local “pattern” in the MLG 
corresponding to the relative index offsets of the near neighbors of the focal node. 
Typical NNTs with different upper bounds for the logical displacement of near 
neighbors (i.e., shells) are shown in Fig. 1. Only index offsets larger than zero need 
be considered. Interactions with nodes having a negative address offset will be 
calculated when those nodes are focal nodes. Three shells of interaction are defined 
in Fig. 1 corresponding to neighbors at different probable separations. The 16 
neighboring nodes indicated with squares form the closest shell. The 30 triangle 
nodes are on average further away and the 16 circle nodes are yet further away. The 
full 5 x 5 x 5 cubical template shown in Fig. 1 nominally includes 125 nodes, but 
since the focal node does not interact with itself and each interaction does not need 
to be counted twice, there are (125 - 1)/2 = 62 interactions considered for each 
node. To complete the shell of circle points requires considering nodes further from 
the focal node than two layers in each direction. 

In general, there should be a correlation between the size of an NNT, in terms of 
the number of nodes included in the logical near neighborhood and the average 
distance between nodes in the system. However, the NNT size and configuration is 
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Flc. I. Near neighbors template defining the logical displacement of nodes considered to be near 
neighbors. 

controlled by the probability, as a function of MLG index, of a neighboring node 
having a separation less than R,. The NNT should be taken large enough that the 
likelihood of a near miss, that is, a node which is outside the template btit yet 
within R,. of the focal node, is acceptably small. 

The characteristics of a near neighbors template will depend on the particular 
monotone mapping connecting the spatial locations of nodes and the corresponding 
locations in the computer memory. When the average node separation in Z, for 
example, is half of the average separation in X or Y, the NNT probably should 
reach more MLG index layers in the k direction (along 2). In fact, there usually 
exists more than one MLG defining a monotone space-to-index mapping. This non- 
unique property of MLGs provides latitude for further optimization in particular 
problems. For example, an optimum MLG for one problem may minimize distan- 
ces to near neighbors. In another problem, the MLG may be optimized when the 
shortest distance to non-near neighbors is maximized. 

The statistical analysis of near neighbor locations which follows is discussed in. 
terms of the NNT described below. This analysis considers the following questions: 

(1) What is the correspondence between relative index offsets of nodes in the 
MLG and the corresponding relative spatial positions’? What is the average 
separation in space of two nodes which are adjacent in the MLG? How does this 
average separation depend on the index offsets between the two MLG nodes? 

(2) How does the necessary configuration and size of an NNT depend on the 
specific type of MLG used for indexing node positions, i.e., the specific indexing 
scheme? In particular, what characteristics of a skew-periodic MLG might require 
or benefit from a modification of the NNT configuration? 

(3) For a given MLG, what methods are available for optimizing the con- 
figuration of an NNT and how does node motion affect this optimization? For 
example, for nodes moving randomly in 3D space the probability distribution for 
the relative separation of near neighbors is spherically symmetric. This symmetry 
can be used to reduced NNT size without inhibiting the accuracy of an algorithm 
using the MLG. 
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The appropriate NNT of course depends on the specific MLG indexing scheme 
selected. The MLG considered in this analysis is a skew-periodic grid as described 
in Section 4. It consists of 8 logical planes each consisting of 64 logical cells 
arranged in an 8 x 8 array. For this MLG the number of node-node interactions 
computed each timestep depends on the number of inter- and intraplane interac- 
tions indexed by the NNT for each “focal node.” An example of the computational 
cost coefficient multiplying the order N scaling of the MLG algorithm is given in 
Ref. [S]. 

3. STATISTICAL ANALYSIS OF NEAR NEIGHBOR POSITIONS 
FOR POINTS IN 3D RANDOM MOTION 

Interpreting statistical information concerning spatial relationships and 
correlations between positions in the MLG requires specifying the parameters 
which affect these positions each timestep. For any system of nodes some of the 
major parameters are: 

(1) The size of the spatial domain relative to the number of nodes comprising 
the system, i.e., the node density. 

(2) The nature of the motion of the node system, e.g., random or nonrandom, 
rotational, compressional, anisotropic. 

(3) The logical structure of the MLG used to index the node positions. 

The statistical analysis described in this section considers a system of 512 non- 
interacting points which can pass arbitrarily close to each other. The velocities of 
these points are random and uniformly distributed in each coordinate from 
- 1 x lo7 cm/s to 1 x lo7 cm/s. The spatial domain, 80 d x 80 d x 80 d, corresponds 
to an average separation of adjacent nodes of approximately 10 d in each coor- 
dinate, roughly the density of gas near standard temperature and pressure. 

Useful statistical information about near neighbor positions is obtained by 
analyzing the statistical distribution of neighbor-focal node separations for the dif- 
ferent NNT offsets. These distributions are accumulated over a sufficiently large 
number of timesteps so that the fluctuations are small. For the system considered 
here, we define a frequency distribution function f(R; i, j, k), where 

f(R; i, j, k) = Frequency for a near neighbor node (with 

NNT offsets i, j, k) having a serapation 

from the focal node contained in the shell 

extending from radius R to R f DR. (3.1) 

The distance classification interval DR is adjusted according to the number of 
separations sampled. 
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FIG. 2. Probability distribution of neighbor separation correspondin, - to NNT cell index oftse:s 
( -2. 1.0) and ( -3, I, 0). The bin size for these distributions is 0.3 ..!. 

Shown in Fig. 2 are probability distributions for near neighbor separations 
corresponding to two NNT offsets. In computing these distributions all 512 nodes 
were treated as focal nodes. The distance classification interval DR for each of these 
distributions was 0.3 A. The time sampling interval used in computing f(R; i, j, k) 
for each of the NNT offsets consisted of five hundred timesteps of length 
2.5 x 10-l” s. This time interval is sufficiently long that the high velocity nodes 
easily traverse the spatial domain, i.e., 80 A, several times. Figure 2 shows a 
correlation between the mean value off(R; i, j, k) and the NNT offsets. The peak of 
the distribution moves approximately 10 d toward larger separations (from 21 .J to 
31 A) when one more node is added between the focal node and the interaction 
node. 

Frequencies for neighbor separations at short range corresponding to an NNT 
ceil having a relatively large index offset from the focal node, i.e., the probabifity 
distribution in Fig. 2 corresponding to NNT offset ( - 3, 1,0), are shown in Fig. 3. 
14s can be seen, even for relatively large index offsets from the focal node there is a 
small but finite probability for a not-so-near neighbor coming quite “‘close.” It is 
these rare “near miss” events which determine the NNT size required to reduce the 
near miss probability to a statistically insignificant level. 

Additional information concerning relative positions of neighbors is provided by 
cumulative integrals over f(R; i, j, k) from 0 to a given separation from the focal 
node. These integrals give the probability that target nodes with a given offset from 
their focal node come within a particular distance of the focal node in space. a 
statistical “near miss” probability. Such information provides a criterion for 
optimizing (or minimizing) the NNT based on the “cutoff radius” R, for the par- 
ticular system. NNT optimization requires analysis of the near miss frequency-for 
each NNT offset, i.e., the cumulative probability of finding a node indexed outside 
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FIG. 3. Frequencies for neighbor separations at short range corresponding to relatively large index 
offsets, i.e. ( - 3, 1, 0), from the target cell. These frequencies are the same as those shown in Fig. 2 for the 
range of distance 0 to 10 2. 

the NNT but within a distance R, of the focal node. Shown in Table I are the near 
miss probabilities as a function of NNT offset for the particular case R, = 3 d. 
These probabilities were computed with the same sampling used for the frequency 
functions shown in Fig. 2 and 3. NNT optimization based on near miss probability 
is discussed in Section 5. Note that no repulsion exists at short distances in these 
tests so this problem overestimates the near miss probability. 

For the system of nodes represented in Table I, i.e., a system where the cutoff 
radius R, = 3 A, all NNT cells more than three index offsets from the focal node in 

TABLE I 

Near Miss % Probability of a Target Node Coming within 
R, = 3 A of the Focal Node as a Function of NNT Offset 

((8 x 8 x 8) System) 

j+3 0.000 0.000 0.0023 0.000 0.000 0.000 0.000 
jf2 0.000 0.0016 0.0222 0.0175 0.0218 0.000 o.oQo 
j+l 0.0008 * 0.019s* 0.3138 0.9886 0.2737 0.0066 0.000 
i F.N. 1.061 0.0125 0.000 

i i+l if2 i+3 

* Frequency distributions corresponding to these cells are shown in Fig. 2. The focal node is at grid 
location (i, j, k). 
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any direction have zero probability of recording a %ear miss,” i.e., coming within 
3 2 of the focal cell. For this system a suitable upper bound on the logical 
separation included in the near neighbors template is therefore N, = 3. For this case 
[5] the total number of node-node interactions computed each timestep for an 
MLG of size N is 

computed interactions = 13 1 x N. I3.2) 

The NNT corresponding to (3.2) was selected on the basis of an upper bound, 
N,, on the ML6 location of “nearest neighbors.” However, as seen in Table I, 
further deletion of NNT cells is possible using an NNT which is more nearly 
spherical. This aspect of NNT optimization is examined in the next section for the 
skew-periodic MLG. 

4. A “SKEW PERIODIC" MLG FOR INDEXING THE GEOMETRIC POSITIONS 

OF NODES IN COMPUTER MEMORI 

More than one type of MLG can be constructed to index nodes in a given spatial 
domain. In particular, for nodes in a 3D spatial domain with periodic boundar]. 
conditions, a new monotonic Lagrangian grid can be constructed which permirs 
more efficient vector manipulation of node attributes than the regular periodic data 
structure. This “skew periodic” MLG also partitions the computational domain 
into cells of equal statistical volume. The data structure removes the need for guard 
cells at the ends of the rows of nodes to implement periodic boundary conditions. 

“Skewing” is a statistical property of a system of nodes where the average relative 
location of neighbors is a function of the direction of the MLG coordinate offset 
relative to the focal node. These skewed positions follow from the asymmetric con- 
straints of indexing node positions in a skew periodic Iattice. In a skew periodic 
MLG the mapping between the spatial coordinates of the neighbors and their 
MLG indices is not exactly aligned. The nature of this misalignment is a result of 
the monotonicity conditions imposed by Eq. (4.1) given bel.ow. Position skewing 
depends on the MLG configuration and diminishes with increased size of the node 
system. 

The skew periodic MLG is comprised of a set of N, logical planes which are each 
skew-periodic. Thus, for all nodes in the system there will be one space coordinate, 
say Z, and one MLG plane index, say k, which must satisfy the monotonicity con- 
dition Z(i, j, li) < Z(i, j, k -I- 1) for 1 <k < N, -- 1. Since N= N, x W,. x hi,. each 
logical plane of the MLG will index N, x N-,. nodes randomly located in 2x3 space. 
Compact vectorization of each plane is achieved by indexing in monotonic order 
the locations of the Yirst” N, nodes and selected periodic images of the other 
(N,) x (N-,. - 1) nodes which are ail at assigned distances from the actual node 
positions. This indexing scheme provides a mapping of a 2D data plane onto a 
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single continuous MLG coordinate axis. Such a mapping satisfies slightly different 
monotonicity conditions from ( 1.1). 

and 

X(ij, k) < X(ij + 1, k) for l<ij<N,xN,,-landallk 

Y(ij, k) < Y(ij+ N.,, k) for l<ij<N,xN.V-N.,andallk 

(4.1) 
Z(ij, kj<Z(ij, k+ 1) for l<k<N,-landallij. 

To emphasize vector indexing the combined index ij is used instead of i and j. The 
point is that the entire plane of N, x NX nodes are now meaningfully contiguous. A 
statistical analysis of position skewing resulting from this MLG follows. 

Consider N., x NJ nodes located in a doubly periodic 2D region of space having 
an area L, x L,,. Letting N., and NJ. equal 3 here for presentation purposes the 
N, x NJ, regularly spaced nodes and their periodic images are shown in Fig. 4a. 

In Fig. 4a the MLG locations, i.e., circles, which are numbered represent the 
location of the nodes which form the regular periodic MLG. The circles which are 

(a) 
00LJ0C000G 
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000~~~0”” 

ooo~~pooo 

0000~s’“00 

000000000 

000000000 

000000000 

(b) 

FIG. 4. Schematic representation of ghost cells required for an NNT having maximum index offsets 
of three: (a) indexing via regular periodic MLG; (b) indexing via a skew periodic MLG. The First and 
last three ghost nodes shown for the skew periodic MLG are required for an NNT having an upper 
bound of 3 on the logical separation. 
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not numbered represent the locations of some of the node images, each of which is 
a distance L = ((nzL,)” + (FzL~)~)‘~~ (m, n = 0, + 1, . ..) from their corresponding 
system nodes. Note that extra images, also called “ghost” nodes, must be added to 
all four boundaries to represent the images in locations where vector operations 
expect to find them. The ghost nodes in the X direction (horizontally in Fig. 4a) 
interrupt the adjacency of data in computer storage and hence interrupt numerical 
optimization through vectorization. The skew-periodic MLG is formed by the 
nodes and node images whose spatial locations satisfy the modified constaints (4.1). 
This is depicted in Fig. 4b. Note that the first and last three ghost nodes shown in 
Fig. 4b are required for an NNT having an upper bound of 3 on the logical 
separation, i.e., NC = 3. 

The system of 512 random points was used to investigate the relative spatial 
positions of nodes and node images indexed by a skew periodic MLG. The 
positions in X and Y of the first N, points and the monotonically ordered position.s 
of the images of the remaining (N,) x (N,. - i j points were fit to a straight line 
using least squares. The configuration sketched in Fig. 4b suggests that the nodes 
will lie, on average, along a skewed line which moves up one cell in Y each time the 
system is traversed in the X direction. This is shown for one of the 8 x 8 skew 
periodic planes from our 512-particle test problem in Fig. 5a. 

a 

b 

Frci. 5. (a) Comparison of node positions indexed by regular and skew periodic MLGs. (b j Average 
area partitioning via parallelograms. Square bracket numbers are images. 
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The calculated slopes of this least squares line fluctuated between 0.12 and 0.13. 
This is consistent with an 8 x 8 logical plane since l/8 = DY/(N, x DX) = 0.125. The 
correlation coefficient for each least-squares fit was approximately 0.95. A typical 
plot of positions indexed by the skew periodic MLG for a logical plane is shown in 
Fig. 5a. Also shown in this figure are the corresponding node positions as would be 
indexed by a regular periodic MLG. That is, the nodes labeled “B”, whose positions 
are indexed by the regular periodic MLG, correspond to the nodes labeled “2”, 
whose positions are indexed by the skew periodic MLG. This same correspondence 
holds between the nodes labeled “C” and “3,” “D,” and “4,” etc. 

The skewing associated with a 2D skew periodic MLG is illustrated by Fig. 5b. 
The average Y coordinates of neighbors in the direction of decreasing X is smaller 
than the average Y coordinate of neighbors in the opposite direction. This results 
directly from the indexing which moves up one row of nodes for each time the 
system length is traversed in the X direction. 

The average relative spatial position of logical neighbors is a function of the 
MLG indexing scheme. We would like to know on average where, relative to a 
focal node, neighbors with a particular MLG offset are likely to be. For a regular 
periodic MLG the overall volume is partitioned essentially cubically. For a skew- 
periodic MLG the statistical volume elements have the shape of parallelepipeds. 
For a 2D skew-periodic MLG, i.e., a logical plane, this is equivalent to an area par- 
titioning in parallellograms. That is, the average relative locations of four adjacently 
located random nodes (i,j), (i+ l,j), (i,j+ l), and (i+ l,j+ 1) form a 
parallelogram. 

The average distance of neighboring nodes from the focal node is recorded in 
Fig. 4a for the system of 512 points with random positions. Note that each NNT 
node has an average RMS distance to the focal node which is only about a factor of 
fi longer than the corresponding distance in a perfectly regular Eulerian grid. This 
is the local price paid for the desired global ordering of the MLG. Shown in 
Tables IIb and c are the average separations of neighbors in X and Y, respectively. 
The average X separation is exactly what we would expect, 10 k. It is seen that only 
the average Y separations are affected by skewing. 

Indexing the NNT locations using coordinates (i, j) and taking the focal node 
(FN) as the origin, skewing is examined by taking divided differences between the 
Y components of neighbors. From Table IIc, for a 8 x 8 x 8 system of nodes having 
random velocities (top number in each cell), 

Y(3, 3)- Y(-3,3) 33.75-26.25 
60 = 60 

=0.125= A, 
x ” 

(4.2) 

Here the average node separation in each direction is 10 A. Because the average 
skewing scales as l/N,, it diminishes as the system size increases. This is a relatively 
small price to pay for more efficient data storage and vectorization. From Table Ilc, 
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TABLE II 

Average Separation of Neighbors from 
Focal Node as a Function of NNT Offset” 

i+3 41.20 35.54 32.13 
42.65 36.77 32.95 

i+2 35.69 28.53 23.59 
36.80 29.56 24.38 

j+ I 32.37 23.73 16.78 
33.02 24.42 17.43 

.Aiwage sepnrution if: X 

j+? - 30.00 - 20.00 
- 30.00 - 20.00 

It2 - 30.00 - 20.00 
- 30.00 ~ 20.00 

/t 1 ~ 30.00 ~ 20.00 
- 30.00 - 20.00 

.i 

.4 wrap separaiim in 1. 

ii3 26.25 27.50 
28.13 28.75 

jt 2 16.25 17.50 
15.36 18.91 

.j+ i 6.250 7.500 
10.34 10.56 

- 10.00 
~ 10.00 

- 10.00 
- 10.00 

- 10.00 
- 10.00 

28.75 
29.38 

18.75 
19.46 

8.750 
10.69 

31.70 
31.96 

23.44 
22.73 

14.02 
14.37 

F.N. 

i 

0.0004 

0.0000 

0.0000 

0.0000 

0.0004 
0.0000 

F.N. 

i 

30.00 
30.00 

20.00 
20.00 

10.00 
10.00 

F.N. 

i 

34.37 39.52 46.32 
34.06 28.74 35.20 

25.60 31.80 39.53 
25.36 32.19 38.77 

18.12 25.68 34.57 
18.09 25.40 34.t2 

14.06 22.59 3 1.96 
14.42 22.79 32.04 

i+l i+2 i+? 

10.00 
lCl.00 

10.00 
10.00 

IO.00 
10.00 

10.00 
10.00 

i+i 

20.00 
20.00 

20.00 
20.00 

20.00 
20.00 

20.00 
20.00 

i+2 

30.00 
30.00 

30.90 
30.00 

3x0 
3G.00 

30.00 
3O.OC 

i+3 

31.25 
30.63 

21.25 
20 67 

11.25 
! 1.59 

1.250 
0.6250 

i+: 

32.50 
31.7 

22.50 
21.31 

12.50 
12.35 

2.500 
1.250 

i+2 

33.75 
31.88 

73.75 

21.95 

13.75 
12.93 

3.750 
I.875 

i+3 

” The top and bottom numbers in each grid cell correspond to (8 x 8 x 8) and i 16 x 16 x 16) systems. 
respectively. 

for a 16 x 16 x 16 system of nodes (bottom number in each cell shown) having 
random velocities, 

Y(3, 3)- Y(-3, 3) = 31.88-28.13 

60 60 

= 0.0625 = A, i4.3 i 

as expected. 
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5. DISCUSSION 

The non-orthogonal, skew-periodic indexing scheme works well in the MLG case 
because the local grid in the various index directions cannot be orthogonal in any 
case since the nodes are Lagrangian. Thus, there is no advantage to maintaining 
orthogonality in node indexing when actual spatial orthogonality is not possible. 

In large systems there is the possibility that the X coordinates may lose some 
accuracy because many system lengths have to be added to the X coordinate when 
using the technique with one big 3D skew periodic grid. If skew periodicity were 
being used in a 100 x 100 x 100 system, the image of point (0, 0, 0) would be 10,000 
system lengths away, or IO6 typical grid spacings. Clearly 32-bit precision would 
not be adequate. In such a large system, however, one would probably not want to 
use this technique. When the vectors become long enough, vectorizing in two 
dimensions at once is no longer attractive. On a Cray, for example, vectors of 
length 64 are long enough. 

On arrays of parallel processors, periodic indexing is sometimes implemented in 
the hardware and skew periodic connectivity is often extended to a number of 
dimensions in the hypercube architecture. In these cases the difficulties and costs 
overcome by the skew periodic MLG in many conventional vector and pipelined 
processors would be absent so using the regular periodic grid might be simpler. On 
the other hand, the skew periodic representation may also be simpler and more 
efficient. 

Although the physical system being described in the two representations, i.e., 
Figs. 4a and b, are identical, the data being stored to describe each system is quite 
different because different images of the nodes are active in each case. The X and Y 
coordinates of nodes 1, 2, and 3 are the same in both representations. In the regular 
periodic grid the nodes 4, 5, and 6, and for that matter 7, 8, and 9, all lie in the 
same periodic domain as the nodes 1, 2, and 3. In the skew periodic grid, each suc- 
cessively higher row of nodes (in this case N: = 3 rows) is displaced a full system 
width L,y in the X direction. Instead of followmg node 3 with the image of node 1, 
as in the regular periodic grid, node 3 is followed directly by node 4. Similarly, node 
6 is followed in the skew periodic MLG by node 7, not the image of node 4 as in 
the regular grid. By adding the system length to each succeeding row of X positions, 
all nodes are automatically positioned properly for separations to be calculated 
directly without concern for whether the node in question is on the boundary of the 
domain. The boundaries of the computational domain have effectively disappeared 
in the X direction. 

The number of storage locations needed to provide guard nodes is much smaller 
in the skew periodic grid since guard nodes are only needed at the “ends” of the 
system, not at the “sides.” The “hiccups” at the beginning of each row in the regular 
periodic representation have been eliminated in the skew periodic representation. 
For example, in Fig. 4a, when the index offsets for the NNT extend to the third 
layer in all directions, as we must do in some of our molecular dynamics 
calculations, the 81 cells in the principle domain and the 8 extra 3 x 3 domains are 
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necessary to set up enough ghost cells to allow vector operations which span the 
entire 2D cross section without boundary interruptions or special boundary correc- 
tions. In this case, as shown in Fig. 4b, the skew periodic grid again uses many 
fewer ghost nodes. Three extra rows plus three extra points on each end of the 
system gives 12 ghost nodes at each end. The total number of points is thus 33 
rather than 81, a substantial savings in computer memory. 

If skew periodicity is used in all three dimensions, the number of ghost cells at 
each end is three planes (27 points) plus three rows (9 points) plus 3 points Thus 
the skew periodic 3D grid has 105 points altogether of which 27 are active. The 
same system represented in a regular periodic grid needs a total of 729 points of 
which only 27 are active. Of course the relative difference is smaller when the active 
MLG is larger than 3 x 3 x 3 but the total amount of wasted storage increases 
rapidly with the size of the system. 

6. NNT OPTIMIZATION AND VECTORIZATION BASED ON THE NEAR MISS PROBABKITV 

The discussion of “near misses” presented here concerns the system described in 
Section 3. These 512 noninteracting particles represents a worst case for NNT 
optimization in significant applications of near neighbor algorithms. For example. 
in molecular dynamics the interaction force becomes repulsive at small separations 
giving each particle a “size.” It is more likely that a particle several NNT nodes 
away will be within R,. of the focal node if it is a finite-size particle rather than zero 
sized. For finite-size particles, there is zero probability for more than one particle to 
occupy the same position in space. A system of non-interacting nodes demonstrates 
two significant aspects of MLG indexing: (1) One is able to construct an optimal 
NNT in terms of the average volume about the focal node containing nearest 
neighbors, i.e., an approximate sphere; and (2) that NNT indexing via offsets 
relative to the focal node permits the computation of node-node interactions Cng 
vector and parallel processing methods. 

The first stage of NNT optimization, i.e., minimal scaling in terms of Eq. (3.2 )? is 
determining an upper bound on the MLG index offsets of nearest neighbors via 
statistical analysis. Such an analysis is shown in Table III for the 512-node system 
for an interaction cutoff radius R, = 4 A. Because of symmetry, only a portion of 
the NNT is considered for each of the logical planes. 

Table III shows that for nodes in the logical plane k = 3 there is essentially zero 
probability for a “near miss.” Further, for the logical planes k = 0, I, and 2, the con- 
tours of constant probability are seen to be roughly circular. The next stage of 
NNT optimization is considering only those logical nodes for which the indexing of 
“close” nodes is possible. For the system described in Table III, this suggests using 
an NNT having a roughly hemispherical shape. The NNT shape can be selected by 
storing in separate data arrays the logical offsets of near neighbors defineij 
according to the skew periodic indexing scheme and the desired NNT shape. The 
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TABLE III 

Near Miss % Probability of a Neighbor Coming within R, =4 A as 
a Function of NNT Offset (8 x 8 x 8) System 

k=O 

j+3 
j+2 
j+l 

.i 

0.000 0.000 0.0039 
0.000 0.0055 0.0585 
0.0008 0.05 11 0.7610 

0.000 
0.0678 
2.115 
F.N. 

0.000 0.000 o.oQo 
0.0499 0.005 1 0.000 
0.5980 0.0226 0.000 
2.277 0.0316 0.000 
if1 i+2 ii3 i-3 i-2 i-l 

k=l 

j+3 
j+2 
j+1 

.i 

0.000 0.000 0.000 
0.000 0.003 1 0.0365 
0.000 0.0258 0.3319 
0.000 0.0183 0.5355 

i-3 i-2 i-l 

0.000 
0.0517 
0.7240 
2.062 

0.000 0.000 0.000 
0.0134 0.0062 0.000 
0.2696 0.0241 0.000 
0.8929 0.0593 0.000 
i+l i+2 i+3 

k=2 

j+3 
j+2 
j+l 

0.000 0.000 0.000 
0.000 0.000 0.0062 
0.000 0.003 1 0.0260 
0.000 0.0036 0.0114 
i-3 i-2 i- 1 

0.000 
0.0021 
0.0385 
0.028 1 

0.000 0.000 0.000 
0.000 0.000 0.000 
0.0161 0.000 0.000 
0.0478 0.0021 0.000 
if1 i-k2 if3 

j+3 
ji2 
j+l 

i 

0.000 
0.000 
0.000 
0.000 
i-3 

0.000 
0.000 
0.000 
0.000 
i-2 

0.000 
0.000 
0.000 
0.000 
i-l 

0.000 
0.000 
0.000 
0.000 

i 

0.000 
0.000 
0.000 
0.000 
i+l 

0.000 
0.000 
0.000 
0.000 
i+2 

0.000 
0.000 
0.000 
0.000 
i+3 

spatial offsets are the fixed separations of the periodic image nodes. This procedure 
is described in Fig. 6a and b. In this figure the array containing the index offsets, 
IJOFF(IPT, K2), is computed outside the timing loop. A similar array is defined 
for the spatial offsets which are used in the interaction calculations. 

In Fig. 6a and 6b, IJN is the maximum node index in the skew-periodic grid in 
logical plane k and NPT is the maximum number of nodes indexed by the NNT in 
logical plane K2. The procedure in Fig. 6a, however, is not optimum for vector 
oriented computers and does not utilize the vector compatibility of the skew- 
periodic indexing scheme. Vector and pipeline processors allow the inner DO-loops 
of a computing procedure to be “vectorized.” The procedure shown in Fig. 6b is 
equivalent to that shown in Fig. 6a but is structured to take full advantage of the 
vector attributes of skew periodicity. 
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Not Optimized for Vector Processing 

(b) 
Optimized for Vector Processing 

FE. 6. Steps of interaction calculation between two logical pianes. 

7. ANALYSIS OF SWAPPING (RANDOM MOTION) 

There are two important measures of swapping to restructure a given node 
system. These are: (1) the total number of swaps per timestep in all iterations and 
(2) the average number of swapping iterations required to reorganize the MLG 
each timestep. These features depend on the extent to which the MLC indices are 
perturbed from monotonicity each timestep by node motions. Each swapping 
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FIG. 7. Distribution of swapping iterations as a function of timestep 

iteration consists of checking ajacent pairs of MLG indices and swapping those 
indices which are not monotonically ordered. More than one sweep through the 
MLG is required in general since only adjacent indices are compared. The amount 
of work to restore monotonicity by swapping is therefore a function of (1) the 
timestep and (2) the number of nodes in the system. An increase in timestep results 
in a larger perturbation of the monotone indexing. An increase in system size 
increases the upper bound on the amount of total reordering which may be 
required to restore monotonicity. 

The statistical results presented here for swapping are for node systems consisting 
of non-interacting points. A qualitative analysis of the dependence of swapping on 
“interaction strength” was undertaken by introducing central forces between the 
system nodes. The swapping required was found to be less than that for non- 
interacting nodes because now nodes often rebound without passing. Thus, for 
applications such as molecular dynamics, a system of non-interacting nodes 
represents a worst case. 

0 1 2 3 4 5 6 7 8 9,011 0 1 2 3 4 5 6 7 8 9 10 1, 0 1234 66789,Oll 

NUMBER OF ITERATIONS NUMBER OF ITERATlONS NUMBER OF lTERATlONS 

FIG. 8. Distribution of swapping iterations as a function of system size. 
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A quantitative picture of the convergence of swapping iterations for this system 
of non-interacting nodes is given in Fig. 7 and 8. Shown in Fig. 7 are distributions 
of swapping iterations for three different timesteps differing by a factor of 4. As 
expected, the relatively larger timesteps require more swaps to restore the MLG 
indices to monotonicity. A sixteenfold increase in timestep, however, occasions only 
a factor of two increase in the number of iterations. Thus, to integrate for a given 
time, the longer timesteps are actually much more efficient. When the nodes travel 
several average spacings per timestep, however. the number of iterations will 
increase linearly with the timestep. 

Shown in Fig. 8 are distributions of swapping iterations for systems having 
j16 x 16 x 16) and (32 x 32 x 32) nodes, respectively. The larger system, as expected, 
reqmres more swaps to maintain MLG order for a given timestep. However, for the 
larger system, the convergence rate for swapping is still comparable to that for the 
smaller system. 

For molecular dynamics and other manybody problems the timesteps used in the 
calculation of Fig. 779 are unrealistically large since the accuracy for real orbits has 
not been considered. An analysis of the swapping iteration was undertaken for 
timesteps having sizes suitable for such applications. For these cases no swapping 
was observed for a significant fraction of the time increments. For those timesteps 
where swaps were required, the maximum swapping iteration levei was about 2. 

The Nlog,(N) scaling of the number of swapping iterations is demonstrated in 
Fig. 9 for three different timesteps. 

lo I-- , - 

6 10 15 20 

log2 N --=---+ 

Frc;. 9. Swapping iterations as a function of system size. 
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